
 

Reconciling System Requirements and Runtime Behavior

 

M.S. Feather

 

1

 

, S. Fickas

 

2

 

, A. van Lamsweerde

 

3

 

, and C. Ponsard

 

3

 

   1

 

 Computing Services Support Solutions, Los Angeles

 

2 

 

Computer Science Department, University of Oregon

 

3 

 

Département d’Ingénierie Informatique, Université Catholique de Louvain

 

Abstract

 

This paper considers the problem of runtime system devia-
tions from requirements specifications. Such deviations
may arise from lack of anticipation of possible behaviors of
environment agents at specification time, or from evolving
conditions in this environment. We discuss an architecture
and a development process for monitoring system require-
ments at runtime to reconcile the requirements and the sys-
tem’s runtime behavior.
This process is deployed on three scenarios of require-
ments-execution reconciliation for the Meeting Scheduler
system. The work builds on our previous work on goal-
driven requirements engineering and on runtime require-
ments monitoring.

 

Keywords: 

 

Self-adapting systems, requirements monitor-
ing, goal-driven requirements engineering, inconsistency
management, obstacles, deviation analysis, system customi-
zation.

 

1. Introduction

 

Requirements engineering (RE) is concerned with the elici-
tation of high-level goals to be achieved by the system envi-
sioned, the refinement of such goals and their
operationalization into specifications of services and con-
straints, and the assignment of responsibilities for the result-
ing requirements to agents such as humans, devices, and
software. 

The RE process often results in specifications that are not
realistic enough; the specifications are likely to be violated
from time to time in the running system that implements
them. Such inconsistencies between the expected and the
actual system behavior arise even when the specification
has been validated with the user and the system is imple-
mented correctly. Reasons for this are that (i) the agents in
the 

 

environment 

 

may behave in ways that were not antici-
pated or unfeasible to model at requirements time [21], and

(ii) the post-deployment evolution of environmental condi-
tions can make initially valid assumptions about the envi-
ronment no longer valid [11]. 

Two complementary approaches can be followed to manage

 

runtime violations of requirements

 

 [16, 17]:

• Anticipating as many as possible of them at specification
time. Obstacles to goals/requirements/assumptions are
derived from first-sketch specifications; more robust spec-
ifications are then derived from the obstacles identified
[18].

• Detecting and resolving such violations at runtime. Reso-
lution here consists in making on-the-fly, 

 

acceptable

 

changes to the requirements. By “acceptable”, we mean
changes that satisfy the high-level goals underpinning the
requirements being violated.

The dynamic approach naturally complements the static
one. While obstacle analysis may prove highly cost-effec-
tive for obtaining robust specifications, 

 

complete

 

 identifica-
tion of all possible obstacles may be unachievable. Besides,
overly defensive specification may be too costly to imple-
ment and result in unnecessary complexity of the software.
Dynamic analysis then comes into play.

The paper explores the dynamic approach by elaborating on
the requirements monitoring paradigm suggested in [11].
The approach requires that alternative system designs be
explicitly represented as system parameters and/or alterna-
tive refinement trees. Two kinds of parameters are extracted
from the requirements specification: 

 

monitored

 

 parameters
(for observing behavior), and 

 

control

 

 parameters (for
changing behavior). Consider, for example, a meeting
scheduling system and a 

 

ParticipantResponsive

 

 

 

assumption
asserting that a participant who receives an invitation to a
meeting will email her time constraints within a week. A
monitored parameter that can be derived from that assertion
might be the participant’s actual response time over a num-
ber of weeks; a control parameter might be the periodicity
of reminders to be sent to this participant.

On-the-fly reduction of the gap between requirements and
runtime behavior is achieved as follows: 

• at specification time, specifications of event sequences to
be monitored are generated from requirements specifica-
tions; 

 

 

 

Copyright 1998 IEEE. Published in the Proceedings of IWSSD9, April 1998
Isobe, Japan. Personal use of this material is permitted. However, permis-
sion to reprint/republish this material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other
works, must be obtained from the IEEE. Contact: Manager, Copyrights and
Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Pis-
cataway, NJ 08855-1331, USA. Telephone: +Intl. 908-562-3966.

 

Thi d d i h F M k 4 0 4



 

• at design time, an architecture of cooperating software
agents is built in which alternative system designs are
explicitly represented as system parameters and/or alter-
native design trees;

• at runtime, the system is observed by a generic monitor so
that instances of the specified event sequences can be sig-
nalled to a generic reconciler that reasons across parame-
ter values and/or design trees. In the former case, the
value of the control parameter associated with the asser-
tion being violated is changed (e.g., send reminders more
frequently for this participant); in the latter case, a shift is
made to some alternative design (e.g., give a phone call to
this participant; or send email to the participant’s secre-
tary; etc.).

Our approach integrates the KAOS goal-driven specifica-
tion methodology [4, 15] and the FLEA runtime event-
monitoring system [2]. Section 2 therefore provides some
background material on KAOS and on FLEA. Section 3
then proposes an architecture of a self-adapting system for
requirements-behavior reconciliation. Section 4 illustrates
the ideas on examples from the Meeting Scheduler system
[15, 9]. Section 5 concludes by discussing the current status
of this work together with future and related work.

 

2. Background

 

2.1 Goal-driven RE with KAOS

 

The KAOS methodology is aimed at supporting the whole
requirements elaboration process -- from the high-level
goals to be achieved by agents in the composite system to
the operations, objects and constraints to be assigned to
software and environmental agents. Thus 

 

WHY, WHO

 

 and

 

WHEN

 

 questions are addressed in addition to the usual

 

WHAT

 

 questions addressed by standard specification tech-
niques. The methodology comprises a multi-paradigm
specification language, a goal-driven elaboration method,
and meta-level knowledge used for local guidance during
method enactment. Hereafter we introduce some of the fea-
tures that will be used later in the paper; see [4, 15] for
details. 

 

The underlying ontology

 

The following types of concepts will be used in the sequel.

•

 

Object: 

 

an object is a thing of interest in the composite
system whose instances may evolve from state to state. It
is in general specified in a more specialized way -as an

 

entity, relationship,

 

 or 

 

event

 

 

 

dependent on whether the
object is an autonomous, subordinate, or instantaneous
object, respectively. Objects are characterized by
attributes and invariant assertions. 

•

 

Action:

 

 

 

an action is an input-output relation over objects;
action applications define state transitions. Actions are
characterized by pre-, post- and trigger conditions.

•

 

Agent: 

 

an agent is another kind of object which acts as

processor for some actions. An agent 

 

performs

 

 an action if
it is effectively allocated to it; the agent 

 

HasAccess

 

/

 

 Has-
Control

 

 

 

to/over an object if the states of the object are
observable/controllable by it. Agents can be humans,
devices, programs, etc.

•

 

Goal: 

 

a goal is an objective the composite system should
meet. 

 

AND-refinement

 

 

 

links relate a goal to a set of sub-
goals (called refinement); this means that satisfying all
subgoals in the refinement is a sufficient condition for sat-
isfying the goal. 

 

OR-refinement

 

 

 

links relate a goal to an
alternative set of refinements; this means that satisfying
one of the refinements is a sufficient condition for satisfy-
ing the goal. The goal refinement structure for a given
system can be represented by an 

 

AND/OR

 

 directed acyclic
graph. Goals 

 

concern

 

 the objects they refer to. 

•

 

Constraint:

 

 

 

a constraint is an implementable goal, that is,
a goal that can be formulated in terms of states controlla-
ble by some individual agent. Goals must be eventually

 

AND/OR

 

 

 

refined 

 

into constraints. Constraints in turn are

 

AND/OR

 

 

 

operationalized 

 

by actions and objects through
strengthenings of their pre-, post-, trigger conditions and
invariants, respectively. Alternative ways of assigning
responsible agents to a constraint are captured through

 

AND/OR 

 

responsibility

 

 

 

links; the actual assignment of
agents to the actions that operationalize the constraint is
captured in the corresponding 

 

performance

 

 

 

links. 

•

 

Assumption:

 

 

 

an assumption is a fact taken for granted
about agents in the environment. Unlike goals, assump-
tions cannot be enforced in general and need not be
refined. Assumptions often appear as auxiliary assertions
needed to prove the correctness of goal refinements or
operationalizations. They are tentatively true and are
likely to change. (Note that a same assertion may be
either an assumption or a constraint depending on the
design; e.g., 

 

ParticipantConstraintsCorrect

 

 

 

may be an
assumption in one design or a constraint in another that
would require the operationalization into actions like

 

CheckParticipantConstraints

 

).

 

Language constructs

 

Each construct in the KAOS language has a two-level
generic structure: an outer semantic net layer [1] for 

 

declar-
ing

 

 a concept, its attributes and its various links to other
concepts; an inner formal assertion layer for 

 

formally defin-
ing

 

 the concept. The declaration level is used for conceptual
modeling (through a concrete graphical syntax), require-
ments traceability (through semantic net navigation) and
specification reuse (through queries) [6]. The assertion
level is optional and used for formal reasoning [5].

The generic structure of a KAOS construct is instantiated to
specific types of links and assertion languages according to
the specific type of the concept being specified. For exam-
ple, consider the following goal specification for a meeting
scheduler system:



 

Goal

 

 

 

Achieve

 

 [ParticipantsConstraintsKnown]

 

Concerns

 

 Meeting, Participant, Scheduler, ...

 

RefinedTo

 

 ConstraintsRequested, ConstraintsProvided

 

InformalDef

 

 

 

A meeting scheduler should know the constraints
of the various participants invited to the meeting within C days
after invitation.

 

FormalDef

 

 

 

∀ 

 

m: Meeting, p: Participant, s: Scheduler
Invited

 

 

 

(p, m)

 

 ∧

 

 Scheduling

 

 

 

(s, m) 

 

⇒

 

 

 

◊

 

≤

 

Cd

 

 Knows (s, p.Constraints)

 

 

 

The declaration part of this specification introduces a con-
cept of type “

 

goal

 

”, named 

 

ParticipantsConstraintsKnown

 

,
refering to objects such as 

 

Participant

 

 or 

 

Scheduler

 

, refined
into subgoals 

 

ConstraintsRequested

 

 and 

 

ConstraintsProvided

 

,
and defined by some informal statement.

The assertion defining this goal formally is written in a real-
time temporal logic borrowed from [14]. In this paper we
will use some classical operators for temporal referencing
[19]: 

 

o

 

 (in the next state), 

 

•

 

 (in the previous state), 

 

◊

 

 (even-
tually), 

 

♦

 

 

 

(some time in the past), 

 

❏

 

 

 

(always in the future),

 

■

 

 (always in the past), 

 

U

 

 

 

(always in the future 

 

until

 

)

 

, 

 

W

 

(always in the future 

 

unless

 

)

 

. 

 

Real-time restrictions are indi-
cated by subscripts [14]; e.g., 

 

◊

 

≤

 

nu

 

 means “some time in the
future within 

 

n 

 

time units 

 

u

 

”. 

In the formal assertion above, the predicate 

 

Invited(p,m)

 

means that, in the current state, an instance of the 

 

Invited

 

relationship links variables 

 

p

 

 and 

 

m

 

 of sort 

 

Participant

 

 and

 

Meeting

 

,

 

 respectively. The 

 

Invited

 

 relationship, 

 

Participant

 

agent and 

 

Meeting

 

 entity are declared in other sections of the
specification, e.g.,

 

Agent

 

 Participant

 

  CapableOf

 

  CommunicateConstraints, ... 

 

Has

 

 Constraints:

 

 Tuple

 

 [ExcludedDates: 

 

SetOf

 

 [

 

TimeInterval

 

],
PreferredDates: 

 

SetOf

 

 [

 

TimeInterval

 

]]

 

Relationship

 

 Invited

 

Links

 

 Participants {

 

card

 

: 0:N}, Meeting {

 

card

 

: 1:N}

 

DomInvar

 

 

 

∀

 

p: Participant, m: Meeting
     Invited (p, m) 

 

⇔ 

 

 p

 

 ∈

 

 Requesting[-,m].ParticipantsList

 

In the declarations above, 

 

Constraints is declared as an
attribute of Participant (this attribute was used in the formal
definition of ParticipantsConstraintsKnown). 

As mentioned earlier, operations are specified formally by
pre- and postconditions, for example,

Action  DetermineSchedule
Input   Requesting, Meeting {Arg : m}; Outpu t Meeting {Res: m}
DomPre    Requesting (-,m)  ∧  ¬ Scheduled (m)
DomPost Feasible (m)  ⇒   Scheduled (m) 

 ∧  ¬ Feasible (m)  ⇒   DeadEnd (m)

Note that the invariant defining Invited is not a requirement,
but a domain description [13]; the pre-/postcondition of
DetermineSchedule above are domain descriptions as well.
The effective requirements are found in the constraints
refining the goals and in the additional pre-/postconditions
and invariants that strengthen the corresponding domain
assertions so as to ensure all constraints specified [4, 15].

2.2 The FLEA monitoring system

The FLEA language provides constructs for expressing

temporal combinations of events. Runtime code to monitor
such combinations is automatically generated by the FLEA
system. The runtime system comprises an historical data-
base management system equipped with an inference
engine, and a communication mechanism to gather events
and distribute notifications of occurrences of event combi-
nations. The rest of this section gives a quick overview of
the capabilities of FLEA [2]. 

FLEA introduces events as special relations in which the
first parameter is the time at which the event occurs. Other
parameters are event attributes.

Some events are external events called “basic events”. They
typically represent applications of actions by autonomous
agents. Such events have to be declared, e.g.,

(defevent constraints-provided: external (string))

for the type of events of a participant (identified by a string)
providing her constraints. Whenever such events are
received by FLEA, it automatically timestamps them, add-
ing that timestamp parameter as the first parameter of the
relation storing that event in the underlying database. For
example,

(constraints-provided 1365124 chp)

records that participant chp has provided his constraints at
time 1365124.

For the experiments so far, events are exchanged between
FLEA and the autonomous agents through a bus (currently
implemented as a flat file which is also a log of all the sys-
tem history). Later implementations may substitute socket
connections for reasons of efficiency.

Beside external events, events may also be defined in terms
of temporal patterns of events such as some specific event
occurring after another (within some time, with no event in-
between, etc.). Table 1 gives the various temporal patterns
currently definable in FLEA.

Events can be counted, values of numerical attributes can
be summed, etc. Such computations yield state information,
which is represented as relations in the underlying database.
Events can in turn be defined in terms of changes to rela-
tions’ values. Thus, states and events can be defined in

Syntax Meaning

then P Q an event P followed by an event Q

then-excluding P Q R an event P followed by an event Q,
without any event R in-between

in-time P Q d an event P followed by an event Q
within time delay d

too-late P Q d an event P not followed by an event 
Q within time delay d

Table 1: Temporal patterns in FLEA



terms of one another.

Example: counting reminders sent to a participant and detecting
when more than 5 reminders have been issued.

More abstract events can be built from elementary events
occurring in the system. In particular, Boolean expressions
can be formed that combine event occurrences and state
predicates. 

The above features are useful for detecting violation of
complex assertions, for keeping track of the frequency of
violations and for deciding when it is time to react.

3. The requirements-runtime reconcilia-
tion process

Figure 1 shows the two levels involved in the requirements-
behavior reconciliation process. 

At development level, the goal-based specification is elabo-
rated; KAOS assertions that could be violated are identified
and systematically translated into FLEA event definitions;
the KAOS specification is implemented as a system of
parameterized cooperating agents. At system execution
level, agent traces are observed by the monitor instantiated
to the event definitions generated at development level; the
violation file produced by the monitor is analyzed by the
reconciler for appropriate response --that is, parameter tun-
ing or shift to an alternative design in the KAOS AND/OR
graph and its corresponding implementation. The response

can be specific to incriminated agent instances (e.g., send-
ing more reminders to the unresponsive participant axel).

To identify deviations between the specified and runtime
behavior, the monitor has to observe the system in action.
Two approaches can be considered: (i) restricting the obser-
vation to the automated part of the system, or (ii) observing
as much as possible --including quantities from the environ-
ment. These two possibilities correspond to the notions of
internal and external monitor, respectively [20]. The second
approach requires appropriate interfaces to be designed for
accessing the state of environmental agents.

The various steps involved in Figure 1 are now detailed
before being illustrated in Section 4.

3.1 Development level
• D1. Elaborate the goal refinement/operationalization

graph, identify breakable assertions in the specification,
and formalize them. Formal refinement patterns may be
used here to help discovering hidden goals/assumptions
[5]. When constraints on single agents are reached in the
refinement process, possibly with companion assump-
tions, the analyst has to ask questions such as “can this
constraint/assumption be violated at runtime due to the
behaviour of some agent instance associated with it?”; “if
so, should one care about such violations to the point that
the assertion needs to be monitored for reconciliation
beyond some violation treshold?”. In the sequel we will
call breakable assertions those assertions retained for

adaptation
manual

Agent

Development time
Runtime

KAOS spec

Implementation

Environment

System

Monitor Agent Agent

Agent

Agent

events

violation file

Reconciler
messages

assertion 
compiler

KAOS assertions

FLEA violation event 
definitions

automated 
adaptation

OK

(refinement graph)

KO

FIGURE 1 - Architecture of a self-adapting system



(Achieve assertion) P ⇒ ◊ ≤nu Q

↓ negation

P ∧ ❑>nu ¬ Q

↓ violation event

too-late P* Q* N

In the Maintain translation rule above, the temporal logic
assertion specifies that the predicate Q must remain per-
manently true from any current state in which P holds
unless predicate R is/becomes true. The FLEA violation
event definition is therefore a disjunction; the first dis-
junct captures the events of P becoming true followed by
Q becoming false without R becoming true in-between;
the second disjunct captures the case of P becoming true
in some (current) state in which Q is false. In the Achieve
translation rule, N is the result of converting the n time
units u (e.g., second, minute, day) into FLEA time units.

The next section will illustrate the translation process on
various KAOS assertions.

• D5. Elaborate traceable architecture and implementation.
Functional goals/constraints assigned to software agents
need to be mapped to modules in an agent-based architec-
ture, and traceability links must be established between
monitored/control parameters in the specification and the
implementation, respectively.

3.2 Runtime level
• R1. Make state information accessible to the monitor. An

appropriate communication channel must be established
between the monitor and each software agent to be moni-
tored in the architecture. Two alternative tactics can be
followed to make the history of monitored parameters
available. 

- Passive communication: every software agent provides
an interface that can be questioned by the monitor. The
latter has to poll every agent at some appropriate sam-
pling rate, depending on time granularity, to make sure
that no meaningful state transition is missed. This
requires a huge amount of historical data to be stored.
Another problem is lack of robustness; missing a single
transition may result in incorrect perception of subse-
quent states.

- Active communication: every software agent notifies an
event to the monitor when a monitored parameter
changes --e.g., a predicate becoming true (that is, a rela-
tionship instance being created); an entity being created;
a KAOS event occurring; an event count being
increased; a change of value for some object attribute;
etc. The price to pay here is that some additional agent
programming is required to signal relevant state transi-
tions (see Section 4). 

Passive and active communication can also be combined
through transition monitoring with regular checkpoints for
resynchronization. Note that in both cases only relevant
events need to be watched/notified, that is, those corre-

monitoring as a result of asking such questions. Breakable
assertions are then formalized (if not done before) so as to
make their temporal pattern explicit. This temporal pat-
tern will be translated into a FLEA violation event defini-
tion in step D4 below.

• D2. Check for monitorability and identify monitored
parameters. For internal monitoring, the objects involved
in an assertion to be monitored must belong to the auto-
mated part of the system (or have a consistent image in
it); for external monitoring, additional interface objects
need to be introduced. Monitored parameters are then
identified therefrom. In general, system adaptation should
not take place after a single assertion violation by some
specific agent instance; a deviation can be accidental and/
or occasional. Moreover, too prompt adaptations could
encourage human agents to deviate too easily. Thus only
recurring deviations should trigger adequate reconcilia-
tion. Therefore, appropriate thresholds have to be defined
and deviation statistics have to be gathered to detect the
event of a threshold being reached. This can easily be
achieved through the counting and summing facilities
provided by FLEA.

• D3. Identify reconciliation tactics. For each breakable
assertion, a choice has to be made between (i) enforcing it
by introduction of restoration actions on control parame-
ters to be identified from the assertion, or (ii) finding an
alternative assertion to achieve the same parent goal in the
refinement graph.

• D4. Translate breakable assertions into FLEA. Defini-
tions of event sequences to be monitored are generated
from real-time temporal logic assertions. This can be done
systematically through the use of transformation rules.

A first step is to map predicates onto events. Predicates
capture relationships in KAOS assertions; for the purpose
of detecting violations, we are interested in the events of a
predicate changing its truth value. We therefore associate
an event type P* with each predicate P appearing in a
breakable assertion; P* captures the class of events of P
becoming true, that is, changing its truth value from false
to true.

KAOS assertion patterns can then be translated into
FLEA event definition patterns by use of transformation
rules. We give a sample of typical ones.

(Avoid assertion) P ⇒  ❑ ¬  Q

↓ negation

P ∧ ◊  Q

↓ violation event

then P* Q*

(Maintain assertion) P ⇒  Q W R

↓ negation

P ∧ ¬ ( Q W R)
↓  violation event

then-excluding P* (¬ Q)* R* or  (P* and  not  Q)



sponding to state transitions in the monitored parameters
derived from the breakable assertions identified.

• R2. Update FLEA event definitions (if necessary). The
event sequences to be monitored must always be consis-
tent with the breakable assertions in the current specifica-
tion. The monitor has therefore to be reconfigured after
customized shift to some alternative design; a new
KAOS-to-FLEA translation has to be performed accord-
ingly.

• R3. Reconcile system requirements and runtime behav-
iour. The violation file produced by the monitor is ana-
lyzed; the reconciliation tactic chosen in step D3 is
applied. The specification and the implementation are
adjusted accordingly; the monitor is reconfigured if nec-
essary.

4. Illustration on the Meeting Scheduler 
system

Figure 2 shows the semantic network for the goal
Achieve[ParticipantConstraintsKnown] in the Meeting Scheduler
specification [15, 9]. The refinement/operationalization sub-
tree captures two alternative “designs” to achieve this goal:
getting a participant’s constraints through explicit requests,
or through access to her electronic agenda. Each design
relies on a different set of assumptions. 

Consider the first alternative. It is AND-refined into two
subgoals: Achieve[ConstraintsRequested] and Achieve[Con-

straintsProvided]. The first subgoal is a constraint assignable
to the ConstraintsHandler agent. It states that a request for
time constraints should be sent to every participant invited

to the meeting:

∀  m: Meeting, p: Participant 

•  ¬ Invited(p,m) ∧ Invited(p,m) 

⇒  ◊≤Yd ConstraintsRequested(p,m) 

This constraint is operationalized through the action Send-

ConstraintRequest.

The second subgoal can be refined according to a mile-
stone-driven tactic [5] --the request must be transmitted by
a communication agent; the request must be answered in
time and in a correct way by the participant; the response
must be transmitted by the communication agent; the
responses must be collected by the scheduler. Note that
some of these assertions are assumptions about agents in
the environment --if electronic mail is used for communica-
tion, the first assumption is about an automated agent in the
environment; the second assumption is about expected
behavior of human agents. 

4.1 Reconciliation by parameter tuning

We first consider the assumption ParticipantResponsive and
replay the various steps described in the previous section. 

Development level

D1. Identify breakable assertions in the specification, and
formalize them. The assumption ParticipantResponsive is
identified as a breakable assertion to be monitored. It can be
formalized by

∀  m: Meeting, p: Participant 

RequestReceived(p,m) ⇒  ◊≤Xd ConstraintsProvided(p,m)

D2. Check for monitorability and identify monitored

Achieve[ParticipantConstraintsKnown]

Achieve[ConstraintsRequested]

Achieve[ConstraintsProvided]

Achieve[AgendaAccessed]

SendConstraintsRequest

CollectResponses

Communication Participant Response

AccessAgenda

Minimize[ParticipantInteraction]

 AgendaAccessible AgendaUpToDate

ConstraintsCollected

SendReminder 

Reliable Responsive Correct

Goal Constraint Agent ActionAssumption Refinement Operationalization Responsibility

Constraints
Handler

OR-node

Constraints
Handler

Agenda
Handler

AND-node

FIGURE 2 - Refinement/operationalization of Achieve[ParticipantConstraintsKnown]



parameters. This assertion is internally monitorable
because the two relationships involved in the assertion, that
is, RequestReceived and ConstraintsProvided, can be accessed
within the automated part of the system through corre-
sponding monitorable events. 

D3. Identify reconciliation tactics. Consider a participant
not responding in time to some constraint request. The fol-
lowing adaptations might be envisaged: increasing the fre-
quency of reminders; emailing the request to another
participant who knows the time constraints of the incrimi-
nated participant (e.g., her secretary); switching to an alter-
native design based on the participant’s electronic agenda.
For the first tactic, the control parameter is the frequency of
reminders, to appear as parameter in the SendReminder

action (under control of the ConstraintsHandler agent). For
the second tactic, the control parameter is the participant
whom to send the reminder to, to appear as parameter in
that same action.

We could make the first reconciliation tactic more precise
through the following domain-specific adaptation rule: 

(a1) IF the average number of reminders-per-meeting 
to this participant becomes greater than U

THEN increase the frequency of reminders 
AND start sending reminders sooner

The second reconciliation tactic could be made more pre-
cise through the following rule:

(a2) IF the average number of reminders-per-meeting 
 to this participant becomes greater than V (V > U)

THEN after the first reminder send next reminders 
to alternative contact person 

We will see below how these rules can be implemented in
FLEA.

D4. Translation into FLEA. The assumption ParticipantRe-

sponsive formalized in step D1 above has an Achieve pat-
tern; the third transformation rule in Section 3.1 is therefore
applicable. The preliminary step of converting KAOS pred-
icates P from this formalization into FLEA event types P*
results in the following FLEA event type declarations: 

(defevent request-received :external (string string))
(defevent constraints-provided :external (string string))

where the two parameters of type string represent the meet-
ing and participant involved, respectively.

The transformation rule for Achieve assertions then directly
yields the following event violation definition:

(defevent constraints-provided-violation 
:definition (participant meeting)

(too-late (request-received $ participant meeting)
(constraints-provided $ participant meeting)

X1) )

In this definition, participant and meeting are introduced as
event attributes to associate the events request-received and

1. X should be converted into FLEA time units.

constraints-provided pairwise for a same participant and meet-
ing.

D5. Elaborate traceable architecture and implementation.
The ConstraintsHandler software agent is derived from the
KAOS specification; it has the parameterized operations
SendConstraintsRequest and SendReminder among its methods
(as discussed in D3).

Runtime level

R1. Make state information accessible to the monitor. Every
time a request for constraints is received or a response is
sent out, the ParticipantMailer agent notifies the event to the
monitor. The event is picked up through the FLEA bus and
incorporated into the FLEA event database.

Example: 
(request-received 01/11/97 Oregano_meeting axel)
(request-received 01/11/97 Oregano_meeting martin)
(request-received 01/11/97 Oregano_meeting jeff)
(constraints-provided 02/11/97 Oregano_meeting martin)
(constraints-provided 04/11/97 Oregano_meeting jeff)

(For simplicity, timestamps are converted into dates.)

R2. Update FLEA event definitions. This step is not neces-
sary here since there is no shift to an alternative design. 

R3. Reconcile system requirements and runtime behaviour.
Assume a time-out of 5 days, and participant axel not hav-
ing returned his constraints for the Oregano meeting before
this time-out. After five days, the following event will be
generated by FLEA and stored in the violation file:

(constraints-provided-violation 06/11/97 Oregano_meeting axel)

Let us show how this information can be used for reconcili-
ation according to the adaptation rules (a1) and (a2) above.
Assume that external events are generated when an invita-
tion is sent out and when a reminder is sent out, according
to the following definitions:

(defevent invitation-sent :external (string string))
(defevent reminder-sent :external (string string))

Then the average number of reminders sent per meeting can
be generated according to the following definition:

(defrel participant-avgnb-reminder :definition (participant avg)
(/ (countof (reminder-sent * participant) =))

(countof (invitation-sent * participant) =))
avg) )

Events can be generated for the adaptation rules (a1) and
(a2) above. The definition of a single event type to handle
the first rule would look like:

(defevent constraint-handler-adaptation-1-needed 
:transition (participant newahead newfreq)

(and (start (> (participant-avgnb-reminder participant) U))
(+ 1 (start-reminders-ahead participant =) newahead)
(+ 2 (frequency-of-reminders participant =) newfreq)) )

The constraint-handler-adaptation-1-needed event will be gen-
erated when the participant-avgnb-reminder value starts to
exceed U, with the event’s parameters newahead set to one



more than the current value (assumed to be accessible in the
relation start-reminders-ahead), and newfreq to two more than
the current value.

Imagine that previously axel has rarely been late to respond
with his time constraints, but now changes his behavior and
is frequently late to respond. As axel’s average climbs above
the U threshold, the system will detect this and increase the
frequency of reminders (e.g., from 2 every week to 4 every
week) and start sending them sooner (e.g., 7 days before the
deadline rather than 6 days before). This is due to the gener-
ation of the event:

(constraint-handler-adaptation ”axel” 7 4)

A similar treatment for adaptation rule (a2) can be used to
change to automatically redirecting reminders to axel’s sec-
retary should he continue to be unresponsive.

The example above also shows the need for some higher-
level language to specify control meta-rules such as (a1)
and (a2) --see the discussion in Section 5.

4.2 Reconciliation by shifting to an alternative 
design

An alternative refinement for the goal Achieve[ParticipantCon-

straintsKnown] is to get the participant’s time constraints by
accessing her electronic agenda (see Figure 2). There are
two assumptions here about participants: (i) they give
access to their agenda, and (ii) their agenda is up to date.
Both assumptions can be monitored on a participant-by-
participant basis. As violations are detected, they are used
to trigger a switch to explicitly asking those participants for
their constraints, rather than rely upon their inaccessible
and/or outdated agendas.

Space limits preclude a complete exposition, but it is worth
noting two points.

Reconciliation tactics

Suppose that the default design is based on the use of elec-
tronic agendas. In case of repeated failure for some partici-
pant, one solution is to dynamically switch to the
alternative design of getting constraints through explicit
request to this participant, while other participants will con-
tinue to be dealt with via their agendas. To accommodate
this, the OR-refinement tree should be annotated with the
following invariant:

∀  m: Meeting

A1 ∪  A2 = {p: participant | Invited(p,m)}) ∧  A1 ∩ A2 = ∅

where A1= {p: Participant | ConstraintsRequested(p,m)}
A2= {p: Participant | AgendaAccessed(p,m)}

System adaptation

At runtime, the software agents responsible for the various
design alternatives need to know exactly which participants
they are controlling. The two sets in the above assertion
must therefore be updated at runtime through adaptation

events that indicate an alternative switch for some specific
agent. Such events can be derived from the above failure
event:

(defevent constraints-handler-notify 
(t1 message participant meeting)

(and (agenda-failure t1 participant meeting)
(<bind message to ”add”>) )

(defevent agenda-handler-notify 
(t1 message participant meeting)

(and (agenda-failure t1 message participant meeting)
(<bind message to ”remove”) )

4.3 Example with a Maintain  pattern

The examples so far considered Achieve assertions, that is,
assertions having the pattern P ⇒ ◊  Q. Maintain goals/
assumptions are frequently found in KAOS specifications;
their pattern is P ⇒ ❑ Q or P ⇒  Q W R. We illustrate the
development level process in such cases.

D1. Identifying and formalizing breakable assertions

It might be desirable to require that the time constraints pro-
vided by a participant for a meeting remain valid unless
changes are explicitly notified:

∀  m: Meeting, p: Participant 
ConstraintsProvided(p,m) 

⇒  ConstraintsValid(p,m) W ChangeNotified(p,m) 

It might be worth monitoring this assertion in order to dis-
courage repeatedly unreliable behaviour.

D2. Check for monitorability and identify monitored
parameters. While the ConstraintsProvided and ChangeNotified

relationships can be accessed within the automated part of
the system, the ConstraintsValid relationship needs some
extra interface to monitor it externally. For instance, a list of
no-shows might be maintained by a MinutesManager soft-
ware agent. The event type that captures invitees appearing
in this list might be named constraints-invalid.

D3. Identify reconciliation tactics. Consider a meeting invi-
tee having sent no constraints change and not showing up.
Various reconciliation tactics can be envisaged, e.g., send-
ing a commitment message upon initial receipt of the con-
straints; publicizing the “black list” of no-shows; assigning
a penalty when such repeated behaviour exceeds some
acceptable treshold; etc. The shift from one design to the
other might be based on the participant’s status --e.g., the
last alternative above might be selected for students.

D4. Translate breakable assertions into FLEA. The relevant
events to be monitored are declared in a way similar to Sec-
tion 4.1. The Maintain transformation rule in Section 3.1 is
applicable and yields the following FLEA violation event
definition, after dropping the second, impossible disjunct:

(defevent constraints-valid-violation 
:definition (participant meeting)

(then-excluding (constraints-provided $ participant meeting)
(constraints-invalid $ participant meeting)
(change-notified $ participant meeting) )



5. Discussion

The novelty of this approach lies in the combination of
goal-based requirements-time reasoning, event-based run-
time monitoring, and system self-adaptation tactics. Discus-
sion will focus on this combination, and skip mention of
alternatives for the individual elements of the combination
(i.e., alternative requirements approaches, alternative treat-
ments of temporal database reasoning).

5.1 Related work

Similar efforts exist towards deriving real-time monitors
from system requirements documentation in the SCR
framework [20]. The similarity with our approach is the
automated generation of a monitor. The difference is that
[20] simulates the whole composite system through finite
state automata to detect deviations (a state of the FSA rep-
resents an equivalence class of histories of the system). This
approach is more operational and suited for testing. We are
also focusing on soft assertions to detect deviations as
opposed to strong requirements (although we could).
Finally, [20] does not consider the problem of reconciliation
after deviations have been detected.

The dynamic inconsistencies we consider are related to the
concept of deviation between a running process and its pro-
cess model as studied in [3]. As in [20], state machines are
used in [3] both for modeling the human environment and
the process support system. 

The Bridget system [12] tackled the bridging of the design-
use gap for form-based interfaces. In this approach, design-
time assumptions about, say, the completion of fields in
forms, were cast into run-time “expectation agents”. These
were able to detect mismatches between assumptions and
use, and report these to developers and/or users. The
KAOS-FLEA marriage takes this idea a step further, the
key being KAOS’ explicit treatment of the requirements
process. The Bridget team has more recently worked on a
design environment, Argo [23], and experiments are under-
way to try to connect FLEA with Argo.

Durney has looked at the problem of requirements adapta-
tion. He has identified a set of requirements strengthening
and weakening transformations based on scenarios gener-
ated through static analysis [7]. We see promise in tying this
work to “scenarios” generated through runtime monitoring
as well.

The execution environment in the general architecture pro-
posed in this paper for runtime monitoring and reconcilia-
tion bears some resemblance to environments having
different operating modes, as found in many control sys-
tems. The main difference lies in what such modes capture
here, that is, goals, assumptions and designs that are trans-
lated systematically into event definitions, and can be
adapted at runtime to reduce monitored deviations while
preserving the higher-level goals those goals/assumptions/

designs contribute to.

5.2 Current status and future work

We are currently implementing a prototype self-adapting
system for the Meeting Scheduler system. Experimentation
with this prototype is needed to show the feasibility and
limitations of our approach. We plan to build a KAOS-
FLEA generator on top of the GRAIL/KAOS environment
[6], by making use of the attributed grammar mechanisms
supported by the abstract syntax tree engine used by
GRAIL [22]. A pre-compiled library of KAOS-to-FLEA
transformation rules should be made available for frequent
goal/assumption patterns. Guidelines for adapting special-
ized assertions should also be provided. 

The requirements-runtime reconciliation process needs
much further attention. One approach under investigation is
to capture adaptation/reconciliation tactics as control meta-
rules, formalized in some high-level declarative language,
from which control code can be synthesized.

Fickas has begun work on a second example problem to test
the architecture we propose. The problem is one of config-

uring an enterprise network1. It pushes our work further in
the area of non-functional requirements. Reliability is an
issue; monitored parameters capture availability of and con-
nectivity to specific resources/subnets over a WAN, and
control parameters capture alternative enterprise-internet-
working designs. Security is an issue; monitored parameters
capture access patterns and known attack signatures, and
control parameters capture firewall settings and access con-
trol lists. Performance is an issue; monitored parameters
capture LAN routing and cycle resources, and control
parameters capture bandwidth reservation policies, host pri-
ority scheduling, etc. Early results suggest a good fit with
the interacting agents model of composite system design
[10], KAOS goals to represent enterprise networking
requirements, the generation of network monitoring
through FLEA, and the runtime adaptation of the system
through consideration of alternative designs.

The enterprise networking problem is also being used to
explore a tighter linkage between static and dynamic analy-
sis. In particular, how can we test that any specific self-ada-
tation architecture is valid? One approach that is currently
being explored is the generation of “adatation tests” from
KAOS specifications. Instead of verifying the correctness
of the specification itself, these tests target the adaptation
strategy embodied in the runtime system. Early results here
again point to a good fit with the components we are
attempting to integrate.

Acknowledgement. Fickas’ work on validation of self-adapting
systems is supported by ARPA as part of the QUORUM group.
The work of van Lamsweerde and Ponsard was partially supported

1. This work is supported by and in cooperation with the Internet 



by the “Communauté Française de Belgique” (FRISCO project,
Actions de Recherche Concertées Nr. 95/00-187 - Direction
générale de la Recherche). Thanks are due to the IWSSD review-
ers for helpful feedback.

6. References
[1] R.J. Brachman and H.J. Levesque (eds.), Readings in Knowl-

edge Representation, Morgan Kaufmann, 1985.

[2] D. Cohen, M. S. Feather, K. Narayanaswamy and S. Fickas,
“Automatic Monitoring of Software Requirements”, Proc.
19th International Conference on Software Engineering, Bos-
ton, May 1997.

[3] G. Cugola, E. Di Nitto, A. Fuggetta and C. Ghezzi, “A Frame-
work for Formalizing Inconsistencies and Deviations in
Human-Centered Systems”, ACM Transactions on Software
Engineering and Methodology Vol. 5 No. 3, July 1996, 191-
230.

[4] A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal-
directed requirements acquisition”, Science of Computer Pro-
gramming, Vol. 20, 1993), pp. 3-50.

[5] R. Darimont and A. van Lamsweerde, “Formal Refinement
Patterns for Goal-Driven Requirements Elaboration”, Proc.
FSE4 - Fourth ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, San Francisco, October 1996.

[6] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde,
“GRAIL/KAOS: An Environment for Goal-Driven Require-
ments Engineering”, Proc. ICSE’97 - 19th Intl. Conference on
Software Engineering, Boston, May 1997, 612-613.

[7] B. Durney, “Requirements Transformations”, PhD Thesis,
Computer Science Department, University of Oregon, 1994

[8] M. Feather. “An Implementation of Bounded Obligations” .
Proc. KBSE’93, 8th Knowledge-Based Software Engineering
Conference, Chicago, Illinois, USA. 1993

[9] M. Feather, S. Fickas, A. Finkelstein and A. van Lamsweerde,
“Requirements and Specification Exemplars”, Automated
Software Engineering, Vol. 4 No. 4, October 1997, 419-438.

[10] S. Fickas and R. Helm, “Knowledge Representation and Rea-
soning in the Design of Composite Systems", IEEE Trans. on
Software Engineering, June 1992, 470-482.

[11] S. Fickas and M. Feather, “Requirements Monitoring in
Dynamic Environments”, Proc. RE’95 - 2nd International
Symposium on Requirements Engineering, York, IEEE, 1995.

[12] A. Girgensohn, D.F. Redmiles and F.M. Shipman, III. Agent-

Based Support for Communication between Developers and
Users in Software Design. In Proc. The Ninth Knowledge-
Based Software Engineering Conference, Monterey, Septem-
ber 1994.

[13] M. Jackson and P. Zave, “Domain Descriptions”, Proc. RE’93
- 1st Intl. IEEE Symp. on Requirements Engineering, Jan.
1993, 56-64.

[14] Koymans, R., Specifying message passing and time-critical
systems with temporal logic, LNCS 651, Springer-Verlag,
1992.

[15] A. van Lamsweerde, R. Darimont and P. Massonet, “Goal-
Directed Elaboration of Requirements for a Meeting Sched-
uler: Problems and Lessons Learned, Proc. RE’95 - 2nd Inter-
national Symposium on Requirements Engineering, York,
IEEE, 1995.

[16] A. van Lamsweerde, “Divergent Views in Goal-Driven
Requirements Engineering”, Proc. Viewpoints’96 - ACM SIG-
SOFT Workshop on Viewpoints in Software Development,
October 1996.

[17] A. van Lamsweerde, E. Letier, C. Ponsard. “Leaving Incon-
sistency”, Proc. ICSE’97 workshop on “Living with Inconsis-
tency”, May 17, 1997

[18] A. van Lamsweerde, E. Letier. “Integrating Obstacles in
Goal-Driven Requirements Engineering”, Proc. ICSE’98 -
20th International Conference on Software Engineering,
Kyoto, April 1998.

[19] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems, Springer-Verlag, 1992.

[20] D. Peters. “Deriving Real-time Monitors from System
Requirements Documentation”, Proceedings of the Third
IEEE International Symposium on Requirements Engineering
(RE’97) Doctoral Consortium, January 1997

[21] C. Potts, “Using Schematic Scenarios to Understand User
Needs”, Proc. DIS’95 - ACM Symposium on Designing inter-
active Systems: Processes, Practices and Techniques, Univer-
sity of Michigan, August 1995.

[22] Reps, T. and T. Teitelbaum. The Synthesizer Generator: A
System for Constructing Language-Based Editors. Springer-
Verlag, 1989.

[23] J.E. Robbins, D.M. Hilbert and D.F. Redmiles. Extending
Design Environments to Software Architecture Design. In
Proc. The Eleventh Knowledge-Based Software Engineering
Conference, Syracuse, September 1996.


